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Parameter estimation and prediction
for the course of a single epidemic outbreak

of a plant disease

A. Kleczkowski* and C. A. Gilligan

Department of Plant Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EA, UK

Many epidemics of plant diseases are characterized by large variability among individual
outbreaks. However, individual epidemics often follow a well-defined trajectory which is
much more predictable in the short term than the ensemble (collection) of potential
epidemics. In this paper, we introduce a modelling framework that allows us to deal with
individual replicated outbreaks, based upon a Bayesian hierarchical analysis. Information
about ‘similar’ replicate epidemics can be incorporated into a hierarchical model, allowing
both ensemble and individual parameters to be estimated. The model is used to analyse the
data from a replicated experiment involving spread of Rhizoctonia solani on radish in the
presence or absence of a biocontrol agent, Trichoderma viride. The rate of primary (soil-
to-plant) infection is found to be the most variable factor determining the final size of
epidemics. Breakdown of biological control in some replicates results in high levels of primary
infection and increased variability. The model can be used to predict new outbreaks of disease
based upon knowledge from a ‘library’ of previous epidemics and partial information about
the current outbreak. We show that forecasting improves significantly with knowledge about
the history of a particular epidemic, whereas the precision of hindcasting to identify the past
course of the epidemic is largely independent of detailed knowledge of the epidemic
trajectory. The results have important consequences for parameter estimation, inference and
prediction for emerging epidemic outbreaks.

Keywords: epidemiology; compartmental modelling; Bayesian inference;
Markov chain methods; plant–pathogen systems; biological control
1. INTRODUCTION

One of the main goals of epidemiological modelling is to
provide guidelines for predicting and controlling disease
outbreaks.This task can be achieved only if a reliable
model is available and successfully parametrized. The
model can subsequently be used to assess the impact of
treatments on potential outbreaks and to predict future
epidemics. Parameter estimation and subsequent testing
of models against data form key steps in modelling
ecological and epidemiological processes. However, these
steps are not often given enough emphasis (Pascual &
Kareiva 1996), owing to the lack of studies combining
highly controllable experimental systems and involving
biologically plausible yet tractable models.

Conventionally, epidemiologists consider single out-
breaks for which some parameters are estimated from
independent studies, while others are found based on
the whole or part of the current outbreak (Anderson &
May 1991; Britton 2001; Ferguson et al. 2001, 2003;
tion of 20 to a Theme Issue ‘Cross-scale influences on
al dynamics: from genes to ecosystems’.
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Keeling et al. 2001; Bjornstad et al. 2002; Grenfell et al.
2002; Haydon et al. 2006). In practice, however, we
might have additional information about other out-
breaks of the disease, often occurring under similar
conditions. Given that other epidemics provide
additional information, we expect that if such infor-
mation is incorporated into a modelling framework,
parameter estimation and prediction of emerging
epidemics could be significantly improved. There is a
tendency, however, in conventional approaches to the
analysis of replicated epidemics to average over
replicates, whereby the results are represented by
their mean with information about variability either
completely missing or at best described in terms of a
standard deviation (Grenfell et al. 1994; Kleczkowski
et al. 1996). Thus, there is a need for a modelling
protocol that enables us to study the properties of a
single replicated outbreak and at the same time to
describe properties of an ensemble of such outbreaks.
Plant epidemiology, with its relative ease in generating
replicate and highly controllable data, gives a unique
opportunity to develop and test such a protocol
(Kleczkowski et al. 1996; Gibson et al. 1999). The
concept of an ensemble used here represents a set of
J. R. Soc. Interface (2007) 4, 865–877
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actual or potential replicates of a biological system,
created by repeating the experiment under the same
macroscopic (or environmental) conditions without
being able to control the microscopic detail.

Despite considerable insights in fitting models
in ecology and epidemiology (Dennis et al. 1995;
Pascual & Kareiva 1996; Finkenstadt & Grenfell 1998;
Finkenstadt et al. 1998; Grenfell et al. 1998; Bjornstad
et al. 2002; Ionides et al. 2006), parameter estimation in
plant epidemiology is still often done under the (implicit
or explicit) assumption that subsequent measurements
are uncorrelated and that we only know the average
behaviour of an ensemble of replicates. Very often this is
not true and epidemic data are characterized by
substantial levels of variability among the replicates
and high correlation along each realization. Thus, there is
an inherent conflict between the statistical methodology
that ignores information contained in replicate data and
the need to describe single replicates. For systems that
possess a well-defined long-term behaviour, we can often
exchange temporal and replicate averaging (Kleczkowski
2005). However, for epidemic outbreaks these two
approaches are often not interchangeable. The number
of infected individuals at any given time strongly depends
upon the number at previous times, generating high
degrees of temporal correlation along each disease
progress curve. For such systems, predictability for a
single replicate along its trajectory can be much
higher than predictability for the ensemble of replicates
(Kleczkowski 2005).

In this paper, we develop a modelling protocol that
allows us to study the properties of an ensemble of
epidemic outbreaks as a whole and at the same time
describe individual outbreaks. We use a deterministic
model to describe the main features of a single replicate
behaviour, but augment this with probabilistic assump-
tions about parameter values (Kleczkowski et al. 1996;
Kleczkowski 1998). The deterministic approach is chosen
here over the fully stochastic one (Gibson et al. 1999,
2004) since differential equations are still the model form
of choice for many studies describing plant, animal and
human epidemics (Gilligan 2002). Information about
replicate and population behaviour is combined within a
hierarchical Bayesian approach. Such approaches have
been widely used in social sciences (Goldstein 2003),
ecology (Koop 2003; Clark & Gelfand 2006) and
epidemiology (Zeger & Karim 1991; Taylor et al. 1994;
Twisk et al. 1994), but have so far received little attention
in the analysis of plant disease epidemics.

In addition to parameter estimation based upon
single replicates, we study the predictability of the
future of an epidemic outbreak based upon its history up
to a certain point. This forecasting method is comple-
mented by hindcasting, whereby we seek to reconstruct
the past epidemic progress from later observations. This
reconstruction allows us to estimate the initial levels of
disease following introduction of a pathogen into the
plant population. Such information about the early
stages of epidemics or the levels and the potential of the
initial inoculum is notoriously difficult to collect.
Knowledge of the early epidemic stages is important,
however, in estimating the risk of recurrent plant
epidemics (Bailey & Gilligan 1999; Bailey et al. 2004).
J. R. Soc. Interface (2007)
We test the protocol using a series of well-controlled
microcosm experiments involving replicated epidemics
for the spread of a fungal pathogen, Rhizoctonia solani
(Kühn) among radish (Raphanus sativus L.) plants
in the presence or absence of a biocontrol agent,
Trichoderma viride (Pers ex Grey). In previous papers
(Kleczkowski et al. 1996; Gibson et al. 1999, 2004), we
have presented experimental evidence for unexpectedly
high levels of variability in the population dynamics of
R. solani in the presence of the biological control agent.
We have shown that small differences in the initiation of
epidemics become magnified later in the season by the
nonlinear character of the infection process. The
variability in the progress of the disease is ‘quenched’
by changes in the host and pathogen behaviour—as
plants become resistant, the rate of primary (soil-
to-plant) and secondary (plant-to-plant) spread
decreases. This results in substantial variability in the
final size of the epidemic, affecting our ability to predict
the severity of the outbreak and potential success of
biological control. However, we show here that it is still
possible to predict the level of disease in a single
outbreak, provided we know its behaviour in the first
few days.

Thus, the paper addresses five questions, all
associated with the relationship between the between-
and within-replicate variability. How can we fit a
model to a single replicate and relate its parameters to
other replicates? How can we combine information
from an ensemble of replicated epidemics to study
general features of this ensemble? How can we
compare two sets of replicated data and assess the
effects of treatments, exemplified here by the presence
and absence of a biocontrol agent, T. viride? How can
we use information about past outbreaks to predict an
emerging epidemic? How long do we need to observe a
new outbreak to be able to predict its future (or past)
course with confidence? In addition, we also ask a more
general question: can a deterministic model be
augmented in such a way that it can be used to
describe a replicated system characterized by a high
degree of variability?
2. MATERIAL AND METHODS

2.1. Experimental data

The experimental system was described by Kleczkowski
et al. (1996) and Gibson et al. (1999, 2004). The data
represent spread of a pathogen in a population of NZ50
plant hosts. Seeds of radish were planted on a 5 by 10
regular (square) grid to a depth of 10 mm in clear plastic
boxes (100 mm wide, 200 mm long and 100 mm deep),
filled with 1.0 kg of white sand with amoisture content of
10% by weight. Ten inoculum units of mycelial discs,
1.0 mm in diameter, removed from the edge of a 5-day-
old colony of R. solani growing in a Millipore filter over
potato dextrose agar, and placed at a depth of 5 mm,
were introduced at random locations into the population.
Each treatment was replicated five times, with all
conditions kept strictly identical in each treatment and
replicate. The boxes were sealed and incubated in a
growth chamber at 238C and 16 hours light and 8 hours
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darkness cycle. The boxes were opened and scored daily
for three weeks to record the number of infected
(damped-off ) plants in each replicate iZ1,., 5, Yij at
each time tj, jZ1,., 14.
2.2. Model

Two phases can be identified in the spread of R. solani
in the plant population (Kleczkowski et al. 1996, 1997).
There is an initial lag following the emergence of plants
after which plants targeted by initial inoculum in the
soil become infected (primary infections). Disease foci
form and subsequently spread, with the dynamics
becoming progressively slower as the plants become
more resistant to infection (Kleczkowski et al. 1996).
We summarize these processes by a deterministic model
in the form of an ordinary differential equation
describing the epidemics spread in a plant population
subject to primary (soil-to-plant) and secondary (plant-
to-plant) infections and decay in infectivity and
susceptibility (adapted from Kleczkowski et al. (1996))

dY

dt
Z ðrpðtÞCrsðtÞY ÞðNKY Þ;

rpðtÞZ rp expðKatÞ;
rsðtÞZ rs expðKatÞ;

ð2:1Þ

where N is the total number of plants; Y is the number
of infected plants; t is time; rp represents the rates of
primary infection and incorporates information about
the density of initial inoculum; rs describes the rate of
secondary infections associated with focal expansion;
and a corresponds to the quenching caused by the decay
in susceptibility and is common to both primary and
secondary infections. This equation belongs to a general
class of S(E)IR models commonly used in plant, animal
and human epidemiology (Anderson & May 1991;
Gilligan & Kleczkowski 1997; Gilligan 2002). Here, we
assume that all infected plants become diseased and
there is no lag between infection and the expression of
disease symptoms. The resulting disease progress curve
has an initial rise towards a temporary plateau,
followed by sigmoidal growth with the rate and
asymptote varying among replicates,

Y ðtÞZ
rp 1Kexp K

rpCrsN

a ð1KexpðKatÞÞ
� �� �

rp CrsN exp K
rpCrsN

a ð1KexpðKatÞÞ
� �

!N hFðt; qÞ; ð2:2Þ
where q represents a vector of parameters.
2.3. Variability

In Kleczkowski et al. (1996), model (2.2) was used to
describe the average behaviour of replicate epidemics.
Thus, the ensemble average at each time point
tj, hY ij , is computed from individual measurements
ðhY ij ZKK1

P
iZ1.KYijÞ and assumed to follow model

(2.2). Gibson et al. (1999) used a stochastic ‘version’ of
equation (2.2) to describe the dynamics of each
replicate epidemic and then combined the individual
likelihoods in order to estimate the parameters common
to the whole ensemble of epidemics. The infection levels
J. R. Soc. Interface (2007)
in each replicate epidemic, Yij, represent the sum of
individual processes involved in epidemic progress in a
population of NZ50 plants and up to 10 infection foci,
each initiated by a unit of inoculum. There is a
fundamental difference between the approach where
model (2.2) is used to describe each individual outbreak
(averaging over N individuals) and average behaviour
of an ensemble of outbreaks (additional averaging over
K replicates). Here, we use a similar approach to
Gibson et al. (1999, 2004), but use the deterministic
model (2.2) to describe the behaviour of each replicated
epidemic Yij over time that distinguishes two sources of
variability, within- and between-replicate variability.

We first consider the estimation of parameters for a
collection of replicate epidemics. The link between the
data and the model is provided by a likelihood function

lðQjyÞZPrðyð1Þoyð2Þo.yðKÞjQÞ

ZPrðyð1ÞjQÞ!Prðyð2ÞjQÞ

!.PrðyðKÞjQÞ ð2:3Þ

to describe the probability that in the ith replicate
we obtain a particular (vector) result y(i)Z(Yij)

T,
conditioned on a particular value of the (vector)
parameter Q. In a general formulation, the vector
parameter Q encompasses all possible choices, includ-
ing parameters common to all replicates, q, and
parameters specific for each replicate, q(i ). We assume
that individual realizations are statistically indepen-
dent, resulting in further expansion in (2.3).

A traditional approach (‘fitting to the mean’)
assumes that the vector of the parametersQ is common
to all replicates. Thus,

lðqjyÞZPrðyð1Þoyð2Þo.yðKÞjqÞ

ZPrðyð1ÞjqÞ!Prðyð2ÞjqÞ!.PrðyðKÞjqÞ; ð2:4Þ

where qZðrp; rs; aÞ. An alternative approach (‘fitting
to the replicates’) is to consider a hierarchical model in
which each replicate is described by a different (vector)

parameter, qðiÞZ r
ðiÞ
p ; r

ðiÞ
s ; aðiÞ

� �
. The individual par-

ameters are then assumed to be drawn from a certain
distribution, characterized by another set of par-
ameters (u) called hyperparameters. Consider the
following expression for the likelihood

lðujyÞZPrðyð1Þjqð1ÞÞ!Prðqð1ÞjuÞ!Prðyð2Þjqð2ÞÞ
!Prðqð2ÞjuÞ.PrðyðRÞjqðRÞÞ!PrðqðKÞjuÞ

ZPrðyð1Þoyð2Þo.yðKÞjuÞ; ð2:5Þ

in which the (hyper)parameters, u, describe the
distribution of q.

We use two models to describe the individual
probability for a given (ith) replicate PrðyðiÞjqðiÞÞ,
representing the within-replicate variation. Since the
data are given as low-integer values, it is natural to
represent them by a binomial distribution, with an
average given by Fðt; qðiÞÞ and the population size of N.
However, the binomial model fails to capture the
essential features of the infection process and therefore
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significantly overestimates the within-replicate varia-
bility. We therefore also consider a normal distribution
for PrðyðiÞjqðiÞÞ, which has the added flexibility of a free
parameter, a variance s2c. The variance is assumed to be
constant along each individual trajectory. The within-
replicate variability represents the temporal uncer-
tainty within the particular outbreak and can be
associated with both demographic stochasticity and
measurement error (Lande et al. 2003).

The distribution of individual parameters,
PrðqðiÞjuÞ, is assumed to be lognormal, so that lnðqðiÞÞ
is normally distributed and characterized by two
hyperparameters each, mean m and variance s2 (these
are vectors corresponding to three parameters
ðrp; rs; aÞ), so that uZðm;s2ÞT. In the simple approach
adopted here we ignore correlation among parameters,
but the model can be easily extended to incorporate it.
The choice of the lognormal distribution allows us to
keep the parameters positive while benefiting from the
flexibility of the normal distribution. The between-
replicate variability represents the uncertainty about
which particular replicate is realized, and this is
associated with demographic stochasticity as well as
with environmental factors that affect replicates
differentially.

Within a Bayesian interpretation, m reflects our
belief about the values of the parameters characterizing
the ensemble as a whole, whereas s2 describes our
uncertainty about these estimates. PrðqðiÞjuÞ may be
interpreted as our belief in the values of parameters
characterizing the particular ith outbreak conditioned
on the hyperparameters u, whereas PrðyðiÞjqðiÞÞ collec-
tively reflect our belief in the size of the outbreak given
the individual parameters q(i). Thus, we divide the total
variability in the experiment into two components, the
between-replicate variability (uZðm;s2ÞT) and the
within-replicate variability (fixed for the binomial
model, fitted s2c for the normal model). Model predic-
tions for the ith replicate at time tj are denoted as yi(tj ).
2.4. Priors

In specifying the priors, we assume that we possess
minimal knowledge of past epidemic outbreaks. This
leads to flat priors for the hyperparameters m,
represented in the simulations by a normal distribution
with a large variance. We also consider a range of more
informative priors by using past studies to guide us in
the choice of the particular prior. Kleczkowski et al.
(1996) and Gibson et al. (2004) have found that the
primary and secondary infection rates are of an order of
magnitude 0.01 dK1, whereas the decay rate is of order
0.1 dK1. We represent this knowledge as a normal prior
form (centred atK4 for rp and rs andK2 for a; note that
m is related to lnðqðiÞÞ and not to q(i )), with a large
variance leading to a relatively broad prior distribution.
For the replicate standard deviation (sc), we not only
used a flat prior over the interval 0; 50ð �, but also
compared the results to an approximate 1/x prior for s2c
(Barnett 1999). For the hyperparameter, s2, we assume
that we have a strong prior belief that all replicate
epidemics occur in similar environmental conditions
and, therefore, we expect small between-replicate
J. R. Soc. Interface (2007)
variability. A range of contrasting priors is considered
for s2

m, represented by an exponential distribution
expðKls2

mÞ, mZ1, ., 3, corresponding to ðrp; rs; aÞ.
Small values of l represent a relatively shallow prior
(e.g. lZ5, reflecting relatively weak prior belief in
uniformity of the replicates) to a steep prior (lZ15,
reflecting strong prior belief in uniformity of the
replicates). We use lZ15 in the paper, but sensitivity
to the prior form is addressed later.

Thus, the full model is given by

Yij ZFðtj ; qðiÞÞCsc3ij

logðqðiÞÞwN ðm;s2Þ
3ijwNð0; 1Þ
mrp wNðK4; 1Þ; mrs wNðK4; 1Þ; mawNðK2; 1Þ

s2wexpð15Þ; scwUð0; 50Þ;

8>>>>>>>><
>>>>>>>>:

ð2:6Þ

where we listed the priors shown in the figures. The
sensitivity of results to particular assumptions about
the model structure and priors is discussed below.
2.5. Forecasting and hindcasting

Here, we focus on a single replicate epidemic for which
we wish to estimate either the unknown future
(forecasting) or unknown past (hindcasting) tra-
jectories. Prediction is therefore performed on one
replicate (iZK1, where K1 is selected from 1 to 5),
assuming that we only possess limited information
about the trajectory of the selected epidemic. The
remaining KK1Z4 replicates act as a ‘library’ of past
outbreaks used to calibrate the model. Splitting the
replicate set into the library and the emerging outbreak
allows us to assess the ability of our model to predict
out-of-sample. For forecasting, we assume that for the
K1-th replicate all data points up to a given point are
known and the remaining course of the epidemic is to be
estimated. To quantify the predictability, we assign the
last point ( jZ14) to be of the particular interest for
forecasting, since it represents the final size of the
replicate epidemic.

For hindcasting, knowledge of the final points of the
epidemic in replicate K1 is assumed. Quantification of
hindcasting is made at tZ8 d. This time is known to be
associated with a switch from primary to secondary
infections for the R. solani–radish system (Kleczkowski
et al. 1996, 1997) and is therefore of biological interest.
Predictability (either forecasting or hindcasting) is
quantified by computing a 95% highest predictive
density region (HPDR) and its width (Barnett 1999).
We use symmetric HPDRs and therefore compute
values of Y corresponding to 2.5 and 97.5% quantiles of
the marginal posterior distribution and then calculate
the difference between the two points.
2.6. Parameter estimation

Parameter estimation and prediction were performed
using Markov chain Monte Carlo methods with Gibbs
sampling, implemented in WINBUGS (WINBUGS v.
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1.4, MRC Biostatistics Unit, Institute of Public Health,
Cambridge, UK). Typically, 50 000 iterations were
performed to burn in and then the model was run for
50 000 iterations to collect the statistics. The Markov
chains for lower tiers of the hierarchy (individual
parameters) mixed well and the distributions were
stable even after a very short burn-in period, with small
correlations between subsequent Markov chain steps.
In contrast, the chains for hyperparameters took longer
to mix and hence we chose a long burn-in period. The
results were also tested for consistency of estimates of
posterior densities of parameters over replicate
simulation runs. Convergence was assessed by running
quantiles and the Gelman–Rubin convergence statistic,
as modified by Brooks & Gelman (1998).
3. RESULTS

3.1. Disease progress

Average and replicate disease curves have a general
sigmoidal shape, exhibiting strong correlation between
successive observations (figure 1a–d ) and large varia-
bility between replicate curves (figure 1c,d ). The model
(2.2) fits each replicate epidemic remarkably well
(figure 1c,d ), with small and uniform residuals
(figure 1e,f ), despite marked differences in shapes of
individual curves and sizes of individual outbreaks. For
some replicates, there is not enough information to
estimate all three parameters successfully, for example if
no or very little infection occurs or if it is present at low
levels (replicates 2, 4 and 5 in the presence ofT. viride). If
we had no other information about replicate epidemics, it
would not be possible to describe or predict such
outbreaks. However, we can use estimated parameters
for other replicates (replicates 1 and 3 in figure 1d ) to
enable the fit for the replicates that would have caused a
problem if hierarchicalBayesianmodel hadnot beenused
(replicates 2, 4 and 5 in figure 1d ).Despite large ensemble
uncertainty, individual curves are smooth and their
short-term behaviour can be predicted with considerable
precision. This is reflected in a small value of the within-
replicate uncertainty, represented by s2c (point estimates
are s2cZ1:13 and s2cZ0:66 for the case without T. viride
and for the case with the biocontrol, respectively; see the
95% credible intervals in figure 1c,d and the spread of
residuals in figure 1e, f ). The residual variance does not
change through time (figure 1e,f ). Neither of these two
features is captured by the model (2.6) in which 3ij are
distributed according to the binomial distribution andwe
therefore show the results for the normal distribution
only, in figure 1 and subsequent figures. Analysis of the
autocorrelation (not shown here) suggests that there is no
significant temporal correlation between residuals,
except for replicate 5 where T. viride completely stops
the spread of Rhizoctonia. This shows that most of the
temporal autocorrelation seen in the disease progress
data is removed by the deterministic model (2.2).
3.2. Parameter estimation

Hierarchical modelling allows us to estimate the
parameters of individual epidemic outbreaks and at
J. R. Soc. Interface (2007)
the same time to study features common to all replicated
outbreaks. Information about individual outbreaks is
given by a posterior distribution PrðqðiÞjuÞ of individual
parameters, whereas common characteristics are
characterized by posterior distributions of hyperpara-
meters in the second tier of the hierarchy, Pr(m) and
Prðs2Þ. Figure 2 shows marginal posterior distributions
of PrðqðiÞjuÞ and Pr(m) for each of three parameters
(lines). Figure 2b,d,f show how Pr(m) compares with
point estimates corresponding to individual replicates,
PrðqðiÞjuÞ (points labelled as in figure 1). Point
estimates (medians and 95% symmetrical credible
intervals) are given in table 1 and compared with values
obtained previously by a maximum-likelihood method
(Gibson et al. 1999), which are similar to those obtained
by Bayesian methods in Gibson et al. (2004). The
parameter estimates are consistent with the earlier
results, but our method allows simultaneous estimation
of parameters for individual replicates.

The rates of primary infection are the most variable
factor affecting disease progress (figure 2a,b). The
biocontrol agent mainly affects the primary infections
by reducing the overall level of infection, although there
is some reduction in the rate of secondary infections
(figure 2c,d ) and the rate of decay (figure 2e, f ). These
results are consistent with Gibson et al. (1999, 2004),
rather than with Kleczkowski et al. (1996), showing
that a deterministic model with a ‘proper’ treatment of
replicate behaviour exhibits behaviour similar to a fully
stochastic model.

Marginal posterior distributions for individual repli-
cate estimates PrðqðiÞjuÞ (figure 2a,c,e) are much
narrower than Pr(m) (figure 2b,d, f ), reflecting the
relative smoothness of each replicate disease progress
curve. Modes of the distribution PrðqðiÞjuÞ are shown in
figure 2 as point estimates. Two out of five replicates
with T. viride are characterized by levels of primary
infections very similar to the case without the control
agent (figure 2a,b), whereas the remaining three
replicates have much smaller values. Other parameters
are much more consistent across the individual
replicate estimates. Individual replicate estimates for
the case without T. viride also show clustering in the
values of the primary infection rate (replicates 1, 2, 3
versus 4, 5). The clustering is reflected in the differences
among the individual disease progress curves
(cf. figure 2a,b with figure 1c,d ).
3.3. Predicting ensemble variability

If no information is available about which individual
replicate we are likely to follow, prediction is linked
to the between-replicate variability (figure 3). This
figure shows marginal posterior density distribution
PrðyjqÞ, representing our belief in the size of an
epidemic based on the population of outbreaks rather
than on an individual replicate. These predictions are
necessarily very broad (as we do not know a priori
which replicate will be realized) and strongly affected
by the choice of the prior information about the
hyperparameters s2 (see below for further discus-
sion). There is a very clear distinction between the
posterior distribution for the between-replicate
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Figure 1. Disease progress curves and residuals for damping-off of radish plants caused by R. solani in the absence (a,c,e) and in
the presence (b,d, f ) of the biocontrol agent, T. viride (Kleczkowski et al. 1996). (a,b) The average behaviour; circles represent
observed data and lines the fit based upon the model of Kleczkowski et al. (1996), fitted to averaged replicate data. (c,d ) The
results of fitting model (2.2) to individual replicates, with solid lines representing the median of the simulated marginal posterior
distribution of yi(tj). Broken lines show boundaries of the 95% high-density region based upon the normal approximation and for
clarity are shown for replicate 1 only. Error bars show the maximum extent of the within-replicate variability assumed by the
binomial model, for replicate 1 only. (e, f ) Residuals for the fit in (c,d ), respectively. In (c)–( f ), data points are labelled 1–5 to
indicate which replicate epidemic they represent. (This labelling is consistent across all subsequent figures.)
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variability with and without T. viride. Introduction
of the biocontrol agent results in a highly skewed
distribution. Thus, although most of the epidemics
are controlled by the biocontrol agent, there is a
substantial chance of an uncontrolled outbreak. This
result reflects the difference between replicates 1–3
and 4 and 5 in the data (figures 1d and 2a; cf. data
points in figure 3). The distributions are qualitatively
similar to the posterior distributions reported by
Gibson et al. (2004) for the fully stochastic model.

The within-replicate variability is very small, as
shown in figure 3 (broken line) by the posterior
distribution of PrðyðiÞjqðiÞÞ!PrðqðiÞjuÞ under the
J. R. Soc. Interface (2007)
assumption of the normal distribution for PrðyðiÞjqðiÞÞ.
This probability represents our belief in the size of the
current ith outbreak and can be interpreted as model
error, i.e. inability of the model to describe the existing
replicate data. The narrow distribution in figure 3 is yet
another manifestation of the smoothness of individual
replicate data as contrasted with the uncertainty of the
ensemble behaviour.
3.4. Forecasting

If only partial information about an individual replicate
is given, forecasting may improve significantly with the

http://rsif.royalsocietypublishing.org/
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amount of information we can supply (figure 4). As an
example, we show the results for replicate K1Z4
without T. viride, but similar results are obtained for
other replicates (cf. figure 5). When only the first three
data points are known (including the trivial point
YijZ0 for tZ4 d), the HPDR is broad, reflecting
relatively large uncertainty in forecasting. However,
observing the outbreak for three more days (up to
day 9) results in significant reduction of uncertainty
associated with our predictions (quantified here by the
95% HPDR). It is worth noting that if we simply
concentrate on point estimates of the disease progress
instead of on the whole distribution (represented by the
J. R. Soc. Interface (2007)
median of the predictive posterior distribution of yK1(tj)
at each time point; broken line in figure 4), the
prediction is remarkably good, even when based on
the first 3 days only (figure 4a). In particular, the
distinction between clusters of replicates (replicates 1, 2
and 3 versus 4 and 5) is clearly made, even if based on
the first three points only (figures 4a and 1).

The results can be quantified by repeating the
forecasting procedure for all lengths of periods of
known data and for all replicates (figure 5a,b). Uncer-
tainty associated with forecasting is very similar for all
replicates, despite very different temporal progress and
very different final sizes of the epidemics (compare

http://rsif.royalsocietypublishing.org/


Table 1. Values of parameters obtained by fitting the model (2.2) to the replicate data. (Point estimates (medians) and
symmetric 95% credible intervals are given here for the hyperparameters mZðmrp ;mrs ;maÞT and for the within-replicate standard
deviation sc. The binomial model assumes that within-replicate variability is described by a binomial distribution, whereas the
normal model assumes a normal distribution. Two prior sets were used for the normal distribution to illustrate the relative
insensitivity to the model assumptions. The flat prior corresponds to a large standard deviation in the normal distribution for
m(103) and an approximately 1/x prior for s2c, whereas the informative prior assumes standard deviation of 1 for the m priors and
uniform prior for s2c. The values are compared with those of Gibson et al. (1999, 2004).)

model
rate of primary infection
(rp)

rate of secondary
infection (rs) rate of decay (a) s.d. (sc)

without biocontrol
binomial 0.018 (0.009–0.0420) 0.013 (0.004–0.025) 0.17 (0.07–0.25)
normal (flat prior) 0.014 (0.006–0.032) 0.016 (0.013–0.022) 0.19 (0.14–0.25) 1.13 (0.95–1.38)
normal (informative prior) 0.013 (0.005–0.029) 0.018 (0.012–0.024) 0.20 (0.15–0.27) 1.15 (0.96–1.40)
Gibson et al. (1999, 2004) 0.02265 0.0118 0.167

with biocontrol
binomial 0.006 (0.001–0.045) 0.006 (0.002–0.02) 0.09 (0.02–0.29)
normal (flat prior) 0.004 (0.000–0.024) 0.011 (0.008–0.015) 0.14 (0.08–0.25) 0.67 (0.56–0.81)
normal (informative prior) 0.005 (0.001–0.031) 0.011 (0.007–0.015) 0.14 (0.07–0.29) 0.67 (0.56–0.83)
Gibson et al. (1999, 2004) 0.0074 0.0102 0.127
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figure 5 to figure 1c,d ). When no information about the
current outbreak is known (tZ4 d in figure 5a,b),
the uncertainty of our predictions for the final size of
the epidemic is very high. However, once we observe the
outbreak for several days, prediction uncertainty is
significantly reduced. There appears to be a critical
period (tZ8–10 d) beyond which there is no significant
improvement in the uncertainty of prediction. Predict-
ability of epidemics with T. viride is initially lower than
in the absence of biocontrol agent, but improves
significantly with time. This is, paradoxically, due to
the large separation of the disease progress curves seen
in figure 1d and the large variability in the rate of
primary infections (figure 2a,b). Thus, once the rate of
primary infections can be estimated with sufficient
precision, the future course of the epidemic can be
predicted very well.
3.5. Hindcasting

In contrast to forecasting, hindcasting is characterized
by low levels of variability (figures 4c,d and 5c,d ). The
uncertainty is also independent of the replicate and of
the lengths of the period for which we know the data.
This paradoxical behaviour (the knowledge of more
data does not improve the predictability) is associated
with a very strong link between the final level of the
epidemic and the rate of primary infections. Thus, once
we know the final level of the epidemic, we can estimate
primary infections very well. Since in addition we also
know the starting point (as all epidemics are initiated at
t1Z0 at the level of YijZ0), the whole trajectory is then
well defined. However, even though the uncertainty is
relatively low, we still might be making a significant
error in our estimation of infection levels in the middle
of the epidemic, see figure 5c for tiZ9–14 d.
3.6. Sensitivity to model choice

The model is based upon three key assumptions:
(i) normal distribution for the within-replicate
J. R. Soc. Interface (2007)
variability, (ii) normal but very broad priors for the
mean of the hyperparameters, and (iii) tight exponen-
tial priors for the variance of the hyperparameters. The
sensitivity of the results to each of these assumptions is
summarized below.

The within-replicate variability was modelled by
two distributions: binomial and normal. There was no
significant difference in the parameter estimates for
either of the distributions, but the normal distribution
modelled the residuals better (figure 1e, f ), particularly
the small variance of the residuals (figure 1c,d ). The
predictability (figure 5) was also qualitatively similar
for models with normal and binomial distributions,
although the uncertainty levels were higher in the
binomial case.

We found that the prior assumption for s2 is the
only model detail which affected the results in a
substantial way. If we have a strong prior belief
that all outbreaks come from the same population of
epidemic outbreaks (i.e. we expect no significant
between-replicate variability), we can choose l to be
large (steep prior; lZ15 as used here). This results
in a relatively tight prediction for PrðyjqÞ (as shown
in figure 3), but creates problems for chain
convergence. However, if we have no prior reason
to believe that future outbreaks come from the same
population (small l; shallow prior), a new outbreak
might be very different from the ones we have
observed so far and the prediction is very uncertain.
In contrast, the individual fits (figures 1–3) were not
affected. For a shallow prior (small l), the quality
of the forecast (figure 5) was significantly lower
when predicting early in the outbreak. However,
once enough information about the particular
replicate was collected, the predictability was
independent of l.

Unless prior knowledge was strongly concentrated
around a specific value of m, the posterior distribution
for parameters was not affected (table 1). Similarly, the
results were not significantly affected when the prior for
s2c was changed. We conclude that the method
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presented here is not sensitive to a wide choice of priors
or detailed model assumptions, although prior infor-
mation can be used to narrow down the estimates in
cases when data are variable.

The replication in this dataset is relatively low (five
populations per treatment). However, parameter esti-
mation worked very well in our case, despite large
variability among the replicates, even if the priors were
chosen to be uninformative.
4. DISCUSSION

Analysis and prediction of disease outbreaks is central
to our ability to prevent and control epidemics.
J. R. Soc. Interface (2007)
Two strategies have been conventionally used to
study disease spread. One approach is focused upon a
single outbreak whereby information collected for other
similar outbreaks is ignored. Alternatively, data are
collected for replicated epidemics, but analysis is
concentrated on average behaviour. This duality
leads to a paradoxical situation whereby in some
cases we do not even attempt to collect or search for
replicate data (for large epidemic outbreaks) while the
information about individual replicates is ignored
when it is available (for controlled experiments, for
example in plant epidemiology or livestock diseases).
There are several problems associated with each of
these approaches.
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If we are dealing with a single realization, we need to
make strong and often arbitrary assumptions about the
underlying probabilistic model that has generated this
realization. Without knowledge of other realizations it
is impossible to estimate the parameters describing the
error structure and magnitude and to validate the
assumptions. Thus, while we can predict the future
behaviour of the emerging epidemic based upon limited
information available for the initial stages of the
epidemic, we often cannot give realistic bounds on the
risk associated with the particular outbreak. Incorpor-
ation of replicate information enables us to carry out
the risk assessment.

However, when replicate data are available but
the underlying stochastic model is oversimplified
(like in the fitting-to-mean procedure), we encounter
a problem of averaging nonlinear disease progress
J. R. Soc. Interface (2007)
curves. In this case, averaging of individual disease
curves produces an outcome that is not equivalent to
the dynamics with average parameters (Kleczkowski
1998; Gibson et al. 1999). In many cases, the average
behaviour might even belong to a completely different
class of functions than the individual replicates
(Kleczkowski 1998). As a result, parameter estimations
based upon average disease progress curves cannot
be used reliably for making inferences about the
underlying biological processes.

Finally, data for replicate epidemics often contain
much more information about the actual biological
mechanisms than the average data or single realiz-
ations. When rp is estimated for the case with T. viride,
we see clustering of disease outbreaks into two subsets,
with replicates 1 and 3 characterized by high levels of
primary infection, whereas replicates 2, 4 and 5 exhibit

http://rsif.royalsocietypublishing.org/


0

10

20

30

40

50

5 10 15 20
0

10

20

30

40

50

4 8 10 12 14 16 18

0

5

10

15

5 10 15 20
0

10

20

30

40

50

4 10 12 14 16 18
prediction cut-off time (days) prediction cut-off time (days)

w
id

th
 o

f 
95

%
 H

PD
R

w
id

th
 o

f 
95

%
 H

PD
R

6 86

(a) (b)

(c) (d)

Figure 5. Forecasting and hindcasting individual outbreaks. (a,b) The width of the 95% highest predictive density regions
(HPDRs) for forecasting final levels (tZ19 d) of replicate epidemics. (c,d ) The width of the 95% high-density regions for
hindcasting the disease levels at tZ8 d. Cut-off time for forecasting is the date for the last measurement, whereas for
hindcasting it is the earliest date for which data are assumed to exist. Plots (a,c) correspond to the case without and (b,d ) with
the biocontrol agent.

Parameter estimation for plant epidemic A. Kleczkowski and C. A. Gilligan 875

 rsif.royalsocietypublishing.orgDownloaded from 
suppressed levels of primary infection (cf. figure 2),
with similar values for rs and a. This result suggests
that T. viride failed to protect against primary
infections in outbreaks iZ1 and 3 leading to particu-
larly high levels of infection at the end of the respective
epidemics (cf. figure 1d ). The clustering of replicate
estimates of rp is also responsible for a long tail of
the distribution Pr(m) (cf. figure 2b) and for the
increased variability in the presence of the biocontrol
agent (cf. figure 3).

In this paper, we have also shown how to combine
information about some past outbreaks with partial
information about the current emerging epidemic. The
hierarchical Bayesian framework can be extended to
incorporate more informative prior knowledge about
the epidemiological parameters than can subsequently
be built into the model via priors for m and s2. This will
narrow down predictability for future outbreaks and
lower the requirements for expensive collection of data.

The method we propose in this paper distinguishes
between two types of variability. The within-replicate
variability is associated with a single replicate and is
characterized by the posterior distribution PrðyðiÞjqðiÞÞ.
J. R. Soc. Interface (2007)
The between-replicate variability describes uncertainty
associated with repeated outbreaks and is characterized
by the posterior distribution PrðqðiÞjuÞ. We have used a
deterministic model to describe the epidemiological
dynamics, an approach still widely used in plant
epidemiology. In this approach, variability is described
phenomenologically, instead of emerging from the
dynamics themselves. Thus, in the model formulation
we do not provide any details about the mechanism
generating the variability. It could be argued that three
sources of variation can been identified in many
ecological and epidemiological systems (Nisbet &
Gurney 1982; Lande et al. 2003). Measurement error
is linked to the sampling procedures, which is particu-
larly imperfect in scoring plants for disease symptoms.
We assume perfect scoring here and so ignore this
element, but it can be incorporated either in the model
(for example, as a cryptic phase; Gibson et al. 2004) or
into the within-replicate variability. Demographic
variability is conventionally associated with chance
events leading to unpredictability even when run under
identical conditions and can be potentially associated
with the within-replicate variability in our model.

http://rsif.royalsocietypublishing.org/
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Environmental variability is conventionally associated
with aperiodic temporal fluctuations affecting all
individuals in the population (Nisbet & Gurney 1982;
Lande et al. 2003). The latter concept can be
generalized to include spatial variability in which
subpopulations are affected differentially by local
variations in the environment. Gibson et al. (1999,
2004) have shown that between-replicate variability
can be described by a stochastic model with no
additional systematic variation among replicated epi-
demics. This result shows that a careful definition of
environmental and demographic variability is needed
for systems in which systematic variation may be
present. We suggest that hierarchical Bayesian model-
ling provides a flexible framework in which to assign a
part of the between-replicate variability to stochastic
and another part to systematic (environmental) vari-
ation. To do this, however, we need to extend our
approach to incorporate a stochastic version of model
(2.2) (Gibson et al. 1999, 2004; Kleczkowski 2005).

In the Bayesian framework, posterior distributions
can be interpreted in terms of probabilities of an
outbreak reaching a certain size. Thus, the framework
developed here can be extended to calculate risks
associated with disease outbreaks (Keeling et al. 2001;
Claessen et al. 2005a,b). It can also be built into expert
systems that allow real-time monitoring and interven-
tion based on partial information about disease
outbreaks.

The modelling approach developed here for plant
epidemics can also be applied for human and animal
diseases. The model is based upon a standard SI model
and extensions to more complicated systems can be
considered, with primary infections corresponding to
external imports of infective individuals (Keeling &
Grenfell 2002). The concept of a replicate, however,
needs careful consideration as it might be difficult to
obtain data for outbreaks under carefully controlled
and replicable conditions. Herds of animals, farms,
wards, hospitals and regions can be approximately
treated as replicated epidemics, even if small levels of
coupling between them are present. It is also possible to
study replicates over time in recurrent epidemics (e.g.
Ionides et al. (2006)), provided the cohorts of individ-
uals are sufficiently distinct so that the carry-over
effects from one season to another can be neglected. Our
method can be generalized to include the time when the
epidemic starts. Hindcasting would then allow us to
trace the origin and history of the current outbreak, for
example AIDS and HIV infections (Lemey et al. 2003).

Central to our paper is the distinction between
within- and between-replicate variability. In the
Bayesian interpretation, the between-replicate varia-
bility corresponds to our degree of belief in the outbreak
size without any reference to the particular replicate:
what would the behaviour be, were the disease to
invade again many times? The within-replicate varia-
bility reflects, in the Bayesian sense, our degree of belief
in properties of each individual replicate: what is the
future behaviour of a particular outbreak? Kleczkowski
(2005) has shown that contrast between within- (or
replicate) and between-replicate (or ensemble) varia-
bility has its origins in properties of a simple birth
J. R. Soc. Interface (2007)
process. In the exponential phase of disease spread,
small differences in the initial conditions are magnified
by the subsequent dynamics. This generates large
differences among realizations while keeping the
individual growth curves relatively smooth. Since
many biological processes are adequately approximated
by the exponential function, we suggest that the
method developed here can be applied to many
epidemiological, ecological and even metabolic
processes (Colman-Lerner et al. 2005).
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